

Hydrogeological Mapping for Climate Resilient WASH in Ethiopia – Lot 5

7 feb 2022

Validation Workshop Phase II

BDA/ICB/GW01/2021

Theo Kleinendorst, Arjen de Vries

Content

- Objectives and activities
- Response to key remarks from inception phase
- Design
- Demonstration of database
- What is next
- Discussion

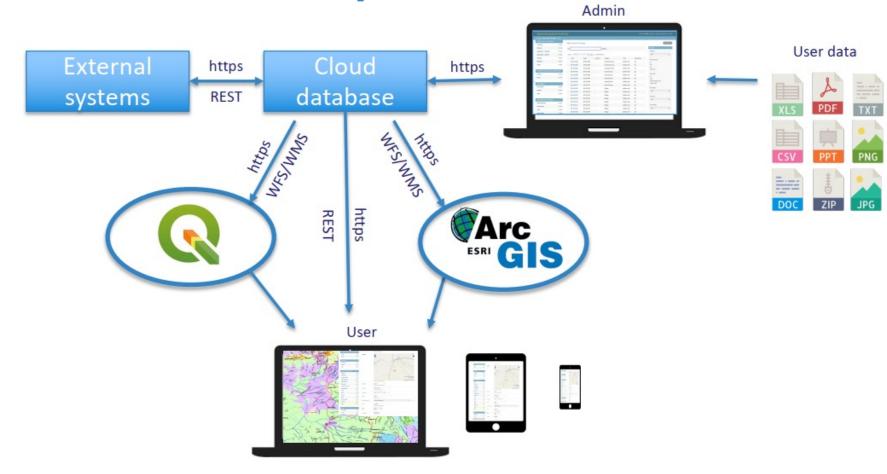
Key objectives

- Review existing groundwater information systems
- Develop a web-based platform
 - two-way information flow; storage and retrieval
 - Management system for outputs LOT1-4
 - test its operation
- Training RWB/ministry staff
- Migration of existing data into that database
 - The information should be reliable, complete, and stored in a well-structured database that is easily accessible.

Planning

LOT V	2021							2022		
	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1. Phase I: Desk Study										
1.1 Assess and review the status and configuration of the existing NGDB	_									
1.2 Identify alternate sources of groundwater information										
1.2 Identify existing functional and non-functional components and system requirements										
1.3 Functional Design										
1.6 Draft Inception report										
1.7 Validation workshop										
1.8 Final Inception Report										
2. Phase II: System design and implementation										
2.1 Design and implementation of database stucture										
2.2 Design and implementation of front-end								1		
2.3 Design and implementation of validation protocol										
2.4 Migration and validation of available data										
2.5 Testing (unit, integration and system)										
2.6 User manual										
2.7 Release										_
3. Phase III: Training and migration										
3.1 Training to BDA staff for the migration of existing information										
3.2 Data migration and support to BDA										
3.3 Final report										
3.4 Validation workshop and acceptance test										
3.5 Data and software transfer to BDA										

Some observations


- Parallel development of water resources database
 alignment for GW aspects crucial
- Challenges earlier initiatives:
 - Partly unvalidated data
 - Not all available data used/imported
 - High level of experience needed, not user friendly
 - Restricted access
 - Monitoring data missing
 - No formal database management procedures
 - Complex support and post-processing procedures
- The current system intends to avoid these challenges

Design principles

- Easy to use and accessible to different users
- Open source, cloud based, client-server
- Data store + Content Management System
- Quality and completeness of data
- Modular, extendable design (small is beautiful)
- Web API for exchange with external systems
- Off-line use
- Access through secure, encrypted SSL connection

system

Remarks inception workshop

- Compatibility with WR database
- Ownership and protection
- How to overcome connection issues
- Does it work offline
- Can new parameters in future be added?
- What linkages to analyses tools are possible
- Is it open-source code; will that work in future

- learned needed of old databases
- Linkage to national water inventory survey
- Expect issues with accessing from the cloud
- Who owns the data
- Why not use commercial software
- Other options than API
- Issues with hosting; who will pay

- > Security
- Sustainability
- Compatibility
- Accessibility
- Ownership/authorization/hosting?

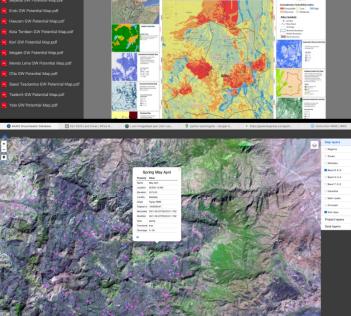
Design – back-end

Groundwater data

- 1. Waterpoint data (inventory data)
- 2. Well construction data
 - Casing arrangements
 - Screen setting
 - Pump details
- 3. Groundwater data
 - Well logs (driller's logs, lithological and geophysical logs)
 - Water samples and analyses
 - timeseries of quality and quantity
- 4. Pumping tests

Design – back-end II

The back-end is also a datastore for other data:


- Documents, spreadsheets, pictures, GIS files, etc.
- Administrative divisions (CSA, 2007)
- Map sheets (1:250,000 and 1:50,000)
- Map compositions for the map viewer

Front-end

Three main modules:

- 1. Database interface
 - Management
 - data entry
 - Querying
 - Import/export
- 2. Document repository
 - documents and maps LOT1-4
 - other relevant documents
- 3. Map viewer
 - interactive
 - Standard and project specific layers

Home - Groundwater Datab	eee viicis			((((
GROUNEWATER EATABASS		Select well to o	change								A20 1
Analyses	+ Add										
Casings	+ Add	۹.		Search							FILTER
Drilling logs	+ Add										Dy functional
Geophysical logo	+ Add	Actor:		Go 0 of 100 selected							Ves
Lithelogical lege	+ A83	CITICINAL ID	NAME	LDGALITY	WOREDA	RYCEBADE	STATIC WATER LEVEL	DECHARGE	DEPTH	FUNCTIONAL	Ne Unknown
Measurweets	+ A00	HEKNI4	HBK#4	Kality	Addis Abeba	Anash	47.40	33.00	502.00	0	
Parameter groups	+ Add	0 97	To	ysibahe	Afdera	Denakil				0	By river basin
Parameters	+ Add	2 90	Aytura	Aytura	Aldera	Denekil			8.00	0	All
Pumping test results	+ Add	0 89	Aytura	Aytura	Aldera	Denakil	3.10		12.00	0	By region
Pumping tests	+ Add	D 85	Katrewad	Reserved	Aldera	Denakil	3.40		12.00	0	All
Gureene	+ Add	0 88	Kasrewad	Reserved	Aldera	Denakli	3.40		9.00	0	Al
Series	+ Add	36	Barka Town	Burka Town	Bet	Anash	11.30			0	By zone
Sites	+ Add	0 147	Erebti Town		Erebri	Denakil	24.80	12.54	129.00	0	All
Springs	+ Add	146	Hygolo		Abala	Denakil	43.38	5.70	182.00	0	
Units	+ A33	145	Gareare		Abala	Denakil	43.28	68.27	153.00	0	By woreda
Water samples	+ Add	0 164	Angubi		Dershale	Denekil		6.22		0	All
and logs	+ Add	0 143	Shahiguki #2		Atabi Wonberta	Denakil		16.25		0	Byorigin
Wells	+ Add	D 142	Shahigubi #1		Bershale	Denakil				0	Al
		2 141	Logia well #3/8		Dubri	Awash	17.84	34.59	127.84	0	
NPORT		140	Logia will #2/8		Dubti	Anash	18.34		120.00	0	
Desulte	+ Add	0 129	Logia well #1/8		Dubt	Anash	15.44		93.00	0	
Templates	+ Add	138	Adele-hingeg Well		Semurabing Celsio	Anash	0.70	27.00	172.00	0	

What is next?

- Training on functionality of database
- Final documentation
- Database and related software transferred
- Short term
 - The target users to migrate their own data to the system
 - Staff of ministry and RWBs to work with database
 - Start developing institutional arrangements
 - Taylor database; look and feel of frontend, and database structure
- Medium term
 - Embedding database in organisation, including linkages with WR database
 - Management of system
 - Development of analysis toolset
 - Offline functionality for field purposes without internet

Support after project

In 2022 Acacia will:

- Keep the database up and running
- Provide support for the migration process
- Make a helpdesk available
 - > to provide support to users and administrators.
 - > a repository for change requests (RFC) and bug reporting.
- > Update the database regularly and fix bugs

Do be discussed

Current project

- Front page design; look and feel
- Access rules / authorization
- Repository structure
- Database administration

Future

• Medium- and longterm activities/ambitions

Ministry of Water and Energy

Groundwater database

Demonstration

Thanks for your attention

Feb 7th, 2022

Woreda 03 House No. 4/020

Sub City Bole,

Addis Ababa

van Hogendorpplein 4, 2805 BM Gouda, the Netherlands

telephone: +31 (0)182 - 686 424

info@acaciawater.com | www.acaciawater.com