

Hydrogeological Mapping for Climate Resilient WASH in Ethiopia – LOT 1

Inception Report Validation Workshop

BDA/ICB/GW01/2021

Arjen de Vries, Theo Kleinendorst

15 July 2021

- Project Objectives and project area
- Key team members

Content

- Background and History
- Results Inception Phase
- Methodology and Workplan
- Points for discussion

- Low success rates
- Poor sustainability
- > Technical failures

- Fully functioning
- good yield, unreliable
- poor yield
- poor yield , poor reliability
- No Flow but worked in last year
- No Flow abandoned

Project Objectives

Overall objective

Increase access to safe and sustainable water for the people in drought affected regions by:

- 1. producing hydrogeological maps at the Woreda level and
- 2. recommend drilling sites for developing groundwater

Project Objectives

Specific objectives

- 1. Create detailed groundwater potential maps for each Woreda.
- 2. Identify two optimal drilling sites per Woreda
- 3. Recommend the type of drilling methodology(s) to be employed
- 4. Build the capacity for stakeholders to use/apply overlay analysis techniques for groundwater potential mapping and borehole siting

Project Area

(Xinto		The to the					
11	Mereb	Saesie		The state				
1	Filler St. F. F. M.	VONGFTS I		Region	Zone	Woreda	Ar	'ea (km2)
to	Tigtay	Hawzen	Barabila	Afar	Zone 1	Kurri		2,870
V	Kola	Her CAM	Der alle	Afar	Zone 2	Afdera		7,435
Sel.	Tselemti			Afar	Zone 2	Berahile		2,509
X,	man and the second second	ALL AND		Afar	Zone 2	Megale		1,548
- Cal	CALL IN	11-224	Atdera	Afar	Zone 4	Yalo		823
	Beyeda	ALL PROVIDE		Amhara	North Gonder	Beyeda		973
dir.	Mar Anton Co	Megale	1 the 1/1/1/12	Tigray	Central	Kola Temben		1,365
1	113 1000	Secondaria Car	Afar	Tigray	Central	Mereb Leke		1,259
1	是一个问题。 第二十一章	Sale XIII	1 Allan	Tigray	Eastern	Erob		773
Real Property		Yalo Yalo		Tigray	Eastern	Hawzen		869
AL AN	Amnaca	Cona Ball	North All	Tigray	Eastern	Saesie Tsaedaemba		963
22	The set of the	harflis		Tigray	Northwestern	Tselemti		2,656
1 An	HETHER THE AND	March X	***•, V//#	Tigray	Southern	Ofla		1,085
	1 Seneral IS CON	AMASTRA				To	tal	25,128

Project Team

Project Team

Background and History

Groundwater feasibility mapping

- Overlay analysis since 2009: India, Indonesia
- Expertise Acacia Water/Aquacon
 - UNESCO/UNICEF 2014: Afar and Tigray
 - UNICEF: RESET-II (2018-2020)
 - WLRC: Kunzila (2020-2021)

Methodology

Phase 1 Planning

					20	021					2022	
	LUIT	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1. Pha	ase I: Desk Study and development of relevant conceptual hydrogeological models and maps											
1.1	Data collection analysis and review of information											
1.2	Develop conceptual hydro-geological model											
1.3	Produce demographic map (1:1,000,000)											
1.4	Produce Hydrogeological map of woredas (1:1,000,000)											
1.5	Prepare Inception Report											
1.6	Inception Workshop											
1.7	Final Inception Report											
Z. Pha	ase II: Groundwater Potential Mapping											
2.1	Develop thematic maps, overlay analysis, and produce groundwater potential map (1:100,000)											
2.2	Identification of priority population and estimate water demand of target aeas											
2.3	Conduct field visit in all target woredas for collection of ground truth information and data											
2.4	Identification of relevant climatic conditions for climate resilient WASH											
2.5	Develop conceptual model (Hydrogeological section) of the woredas											
2.6	Select target areas for detail study											
2.7	Prepare and submit draft report											
2.8	Organize Validation workshop of the groundwater potential mapping											
2.9	Final groundwater potential mapping report											
3. Pha	ase III: Detail site specific Hydrogeological and Geophysical Investigation											
3.1	Conduct detail Hydrogeological study of selected target areas											
3.2	Conduct detail Geological study of selected area											

Phase 2 Planning

IOTI					20	021			2022		
	LUTT	May Jun Jul Aug Sep Oct Nov Dec			Dec	Jan	Feb	Mar			
1. Phas	e I: Desk Study and development of relevant conceptual hydrogeological models and maps										
1.1 0	Data collection analysis and review of information										
1.2	Develop conceptual hydro-geological model										
1.3 P	Produce demographic map (1:1,000,000)										
1.4 P	Produce Hydrogeological map of woredas (1:1,000,000)										
1.5 P	Prepare Inception Report										
1.6 I	nception Workshop										
1.7 F	inal Inception Report										
2. Phas	e II: Groundwater Potential Mapping										
2.1 [Develop thematic maps, overlay analysis, and produce groundwater potential map (1:100,000)										
2.2	dentification of priority population and estimate water demand of target aeas										
2.3 0	Conduct field visit in all target woredas for collection of ground truth information and data										
2.4 1	dentification of relevant climatic conditions for climate resilient WASH										
2.5 [Develop conceptual model (Hydrogeological section) of the woredas										
2.6 5	elect target areas for detail study										
2.7 P	Prepare and submit draft report										
2.8 0	Organize Validation workshop of the groundwater potential mapping										
2.9 F	inal groundwater potential mapping report										
3. Phas	e III: Detail site specific Hydrogeological and Geophysical Investigation										
3.1 0	Conduct detail Hydrogeological study of selected target areas										
3.2 0	Conduct detail Geological study of selected area										

Phase 3 – Field investigations

IOTI		2021								2022		
1011	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	
3. Phase III: Detail site specific Hydrogeological and Geophysical Investigation												
3.1 Conduct detail Hydrogeological study of selected target areas												
3.2 Conduct detail Geological study of selected area												
3.3 Conduct Geophysical Survey and prepare Geophysical map (1: 5,000)												
3.4 Determine impact of climate change on groundwater resources in selected areas												
3.5 Prepare Hydrogeological conceptual model and map of target area (1: 50,000)												
Select optimum site for drilling borehole and corresponding potential climatic sensitivities requiring 3.6 resilience measures												
Produce well design, specification and select appropriate drilling technology and BOQ preparation 3.7 for CR-boreholes												
3.8 Prepare and submit draft report												
3.9 Organize validation workshop of draft report											•	
3.1 Final report											•	
4. Capacity Building												
Training on groundwater mapping, interpretation of the remote sensing overlays & integrating 4.1 borehole & surface geophysical information for regional experts												
4.2 Training on information management and knowledge dissemination for stakeholders												
Provide five days training workshop for trainees from federal and regional governments and NGO 4.3 partners												
Training for counterparts on groundwater mapping, interpretation of maps and integrating 4.4 boreholes with geophysics information												
4.5 Organize all Relevant Data, Information, Tools and software, and handing to BDA	2											

Capacity building

IOTI		2021					2022				
2011		Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
3. Phase III: Detail site specific Hydrogeological and Geophysical Investigation											
3.1 Conduct detail Hydrogeological study of selected target areas											
3.2 Conduct detail Geological study of selected area											
3.3 Conduct Geophysical Survey and prepare Geophysical map (1: 5,000)											
3.4 Determine impact of climate change on groundwater resources in selected areas											
3.5 Prepare Hydrogeological conceptual model and map of target area (1: 50,000)											
Select optimum site for drilling borehole and corresponding potential climatic sensitivities requiring 3.6 resilience measures	B										
Produce well design, specification and select appropriate drilling technology and BOQ preparation 3.7 for CR-boreholes											
3.8 Prepare and submit draft report											
3.9 Organize validation workshop of draft report											•
3.1 Final report											
4. Capacity Building											
Training on groundwater mapping, interpretation of the remote sensing overlays & integrating 4.1 borehole & surface geophysical information for regional experts											
4.2 Training on information management and knowledge dissemination for stakeholders											
Provide five days training workshop for trainees from federal and regional governments and NGO 4.3 partners											
Training for counterparts on groundwater mapping, interpretation of maps and integrating 4.4 boreholes with geophysics information											
4.5 Organize all Relevant Data, Information, Tools and software, and handing to BDA											

Risk mitigation

Major areas	Principle risks	Mitigation measures
Borehole Yield	Unable to meet demandDeclining yields	Improved borehole sitingImproved borehole design
Borehole water quality	 Anthropogenic quality issue Natural quality issues Nearby land uses that might impact releases, spills or leaks, 	 Siting including protective zones Wellhead drainage works, land use control Proper borehole construction with protection against contaminant Fuel storage and spill control plans for fuels.
Borehole functionality	 Operational risks related to borehole malfunctions or breakdowns and availability of power for pumping Risk of damage due to location, poor security, and theft. 	 Contracting professional firms for borehole construction. Training borehole operators by means of capacity training Instituting formal O&M procedures. Developing Wellhead Protection Programs
Borehole monitoring	 Uncontrolled groundwater abstraction Delayed action in case of breakdown/failure Delayed action in case of pollution Non timely mitigation intervention and troubeshooting and troubleshooting. 	 A formal monitoring plan in place Monitoring of a range of parameters, such as: Condition of equipment Daily pumpage (rate (Q), duration, volume) Water levels (static and pumping) Water level drawdown Water quality

Phase 1 Results

- Socio-economic map 1:1,000,000
- Hydrogeological map 1:1,000,000
- Conceptual hydrogeological model
- Database waterpoints, socio-economy
- Inception report

Socio-economic map

- Based on census 2007
- Updated administrative boundaries and population projections from:
 - Central Statistic Agency (CSA)
 - Regional Bureau of Finance and Economic Development (BoFED)
 - UN Office for Coordination of Humanitarian Affairs (OCHA)
- Water point data from:
 - Ministry of Water, Irrigation and Electricity (MoWIE, RWB)
 - National Wash Inventory (NWI)
 - UNICEF Ethiopia (GW4E)

Population density

Population

Health facilities

Health facilities

Schools

Schools

Waterpoints

Waterpoints

- Permanent

Hydrogeological map

Geology

- Based on:
 - Geological maps published/unpublished (1:250,000)
 - Fundamental reports describing geology of the area
- Harmonized and described in two morpho-structural domains:
 - The western plateau with adjacent escarpment
 - Afar Depression

Hydrogeological map

Hydrogeology

- Based on:
 - data and hydrogeological and hydrochemical maps at scale 1:250,000 and their explanatory notes published by Geological Survey of Ethiopia
 - data and information collected from different sources

Classification:

- Qualitative parameters (porous, fissured, karstified, ..)
- Quantitative parameters (highly/moderate/low productive aquifers, aquitards, aquicludes)

Aquifer classification

Highly productive porous aquifers (T = 10 - 100 m2/d, q = 1 - 10 l/s.m, Q = 5 - 25 l/s for wells and/or springs) or locally extremely productive aquifers

Moderately productive porous aquifers (T = 1 - 10 m2/d, q = 0.01 - 1 l/s.m, Q = 0.5 - 5 l/s for wells and/or springs) or local or discontinuous but highly productive aquifers

Highly productive fissured / karst aquifers (T = 10 - 100 m2/d, q = 1 - 10 l/s.m, Q = 5 - 25 l/s for wells and/or springs) or locally extremely productive aquifers consisting of sedimenta and volcanic rocks

Moderately productive fissured aquifers (T = 1 - 10 m2/d, q = 0.01 - 1 l/s.m, Q = 0.5 - 5 l/s for wells and/or springs) or local or discontinuous but highly productive aquifers consisting of sedimentary and volcanic rocks Low productive fissured aquifers (T = $0.1 - 1 \text{ m2/d}, q = 0.001 - 0.01 \text{ l/s.m}, Q = 0.05 - 0.5 \text{ l/s for wells and/or springs) in which flow is mainly developed in irregular system of fissures & weathered mantle of a crystalline rock$

Aquitards minor aquifers with local & limited groundwater resources consisting of sedimentary and volcanic rocks

Aquiclude - formation with essentially no groundwater resources consisting of dome forming phonolite / trachyte & gabbro and metagabbro (aquifuge – solid rocks / blind rocks)

Moderately productive aquifers with alternating layers of fissured and porous permeability (T = 1 - 10 m2/d, q = 0.01 - 1 l/s.m,Q = 0.5 - 5 l/s) for wells and/or springs)consisting of Dalha Formation of basalt flows and layers of lacustrine sediments

HYDROGEOLOGICAL MAP OF LOT 1

Geology compiled by Geological Survey of Ethiopia from 1071 to 3015 Hydrogeology compiled by: 3rt Sima, 2821 Digital Cartography, Statisticae Ayete Mano, 2001

Phase2: Mapping

For every woreda:

- Prepare base layers
- Determine classes, scores and weights
- Initial overlay
- Ground-truthing, water demand update
- Prepare potential maps
- Prepare water demand maps

Phase2: Target area selection

For every woreda:

- Estimate impact of climate change
- Combine potential and demand
- Propose priority areas
- Select target areas

Inventory formats

Inventory

LOT#	Depth (m)
Unique code	SWL (m)
Region	DWL (m)
Zone	Yield (I/s)
Woreda	Aquifer/formation
Kebele	Site topography
Village	Temperature
Easting	EC (µS/cm)
Northing	TDS (mg/l)
CRS	рН
Elevation	Collected by
Scheme Type	Date
Status	Sample taken
Purpose	Sample nr

Water quality

General	Parameters
ab No.	Sodium
Client/Project	Potassium
Client ID	Total Iron
ocation	Manganese
Reported Date	Ammonia
Client Ref	Total Hardness
Date of Collection	Calcium
Source of Sample	Magnesium
Date received	Alkalinity
рΗ	Carbonate
Electrical Conductivity (µS/cm)	Bicarbonate
	Chloride
	Sulphate
	Nitrate
	Fluoride

Base layers

- Permeability (primary porosity)
- Lineaments (secondary porosity)
- Recharge
- Slope
- Land use and land cover
- Soil type

Permeability

Source:

geological map

Procedure: Group lithology by permeability class

Alternative procedure:

Use classes from hydrogeological map

Recharge

Sources: Precipitation data

Evapotranspiration data Infiltration coefficient

Procedure: (P-ET) * IC

Lineament density

Sources: SRTM Sentinel-2/Landsat-8

Procedure:

Extraction: LINE module of PCI-Geomatics* Density (length per cell) in GIS

*Uses on edge detection algorithm (Canny), filtering and extraction

Lineament proximity

Sources: Geological map Sentinel-2/Landsat-8/Google Earth

Procedure:

Extraction: manually Proximity: (distance to line) in GIS

Slope

Source: SRTM

Procedure: Standard GIS algorithm

Land use

Source: Sentinel-2, ESA

Procedure:

Group land use classes by recharge potential

Soil

Sources: EthioSIS (ATA) ISRIC (Wageningen University)

Procedure:

Group soil classes by infiltration capacity

Classes and scores

Slope in degrees	Score
0 – 3	0.6
3 - 5	0.3
5 – 15	0.1
> 15	Not suitable

Lineament proximity in m	Score
0 – 500	0.62
500 – 1000	0.16
1000 – 2000	0.11
2000 – 4000	0.07
> 4000	0.04

Recharge in mm	Score
< 25	0.05
25 – 50	0.11
50 – 100	0.27
> 100	0.57

Landuse	Score
Cropland	0.44
Bush/ range land	0.29
Forest	0.17
Degraded land	0.07
Urban	0.03

Lithology class	Score
Loose quaternary sediments including elluvials and Miocene sediments	0.25
Rift pyroclastics and rift silicics	0.1
Upper Tertiary basalts, Quaternary highland basalts, Rift basalts	0.35
Lower Tertiary basalts	0.15
Limestone, upper sandstone, shale, marls, all other Mesozoic sediments	0.05
Lowgrade basement rocks and Adigrate sandstone	0.08
Highgrade basement rocks	0.03

Lineament density in km/km2	Score
< 0.3	0.03
0.3 - 0.6	0.07
0.6 – 0.9	0.15
0.9 – 1.2	0.3
> 1.2	0.45

Weights

Layer	low	high	average
lithology	0.06	0.53	0.32
density	0.13	0.43	0.24
recharge	0.10	0.57	0.17
slope	0.10	0.21	0.15
proximity	0.03	0.11	0.06
landuse	0.03	0.06	0.05

Secondary layers

- Normalized Differential Vegetation Index (NDVI)
- Topographic Wetness Index (TWI)
- Drainage density
- Soil moisture

Lineament density

Lineament proximity

Slope

Recharge

Suitability

Phase 3: Siting

For every Target Area:

- Detailed hydrogeological study (fieldwork)
- Detailed demand assessment (fieldwork)
- Geophysical study (fieldwork)
- Hydrogeological conceptual model
- Hydrogeological map (1,50,000)
- Resilience assessment
- Drilling site map (1:5,000)

Points for discussion

- Administrative boundaries
- Population projections
- Water demand criteria
- Layer selection, resolution
- Classes and scores
- Training schedule/alignment
- Dissemination (Lot 5)
- Security issues

Thanks for your attention

July 15th 2021

van Hogendorpplein 4, 2805 BM Gouda, the Netherlands telephone: +31 (0)182 - 686 424 info@acaciawater.com | www.acaciawater.com