

Hydrogeological Mapping for Climate Resilient WASH in Ethiopia – LOT 1

21 March 2022

Phase 3 Validation

BDA/ICB/GW01/2021

Foreign, Commonwealth & Development Office

Content

- Objectives and activities
- Summary phase II
- Challenges Phase III
- Examples of target areas
- Second7 data
- Examples drilling sites
- Recharge, water use and Resilience

Project Objectives

Increase access to safe and sustainable water for the people in drought affected regions by:

- 1. producing hydrogeological maps at the Woreda level and
- 2. recommend drilling sites for developing groundwater

Project Objectives

Specific objectives

- 1. Create detailed groundwater potential maps for each Woreda.
- 2. Identify two optimal drilling sites per Woreda
- 3. Recommend the type of drilling methodology(s) to be employed
- 4. Build the capacity for stakeholders to use/apply overlay analysis techniques for groundwater potential mapping and borehole siting

Data collection

Target area selection

Project Area

Region	Zone	Woreda		Area (km2)
Afar	Zone 1	Kurri		2,870
Afar	Zone 2	Afdera		7,435
Afar	Zone 2	Berahile		2,509
Afar	Zone 2	Megale		1,548
Afar	Zone 4	Yalo		823
Amhara	North Gonder	Beyeda		973
Tigray	Central	Kola Temben		1,365
Tigray	Central	Mereb Leke		1,259
Tigray	Eastern	Erob		773
Tigray	Eastern	Hawzen		869
Tigray	Eastern	Saesie Tsaedaemb	а	963
Tigray	Northwestern	Tselemti		2,656
Tigray	Southern	Ofla		1,085
			Total	25,128

AFAR

Data Sources and assumptions:

- Population data: based on the census 2007 data (CSA, 2017, 2019), estimated for 2030
- Livestock: estimated from zonal data 2007
- Water demand:
 - Drinking
 - Livestock

Target area; 26 in total Criteria:

- Potential
- Demand

Phase III

The main deliverables

- For each 26 target area
 - Hydrogeological study / Conceptual model
 - Geological study
 - Geophysical survey
- 42 drilling sites
- Well design and technical specifications
- Hydrology (SWAT Water balance modeling)
- Groundwater Risk Mitigation Strategy
- Training on GIS/RS

Field surveys not possible due to access restrictions

Alternative approach

- secondary data
- Expert judgement
- High resolution satellite imagery
- Airborne geophysics
- Climate resilience

Team of experts – Phase III

Торіс	Expert
Geology	Dr. Tarekegn Tadesse Dr. Yohannes Degu Jiri Sima
Hydrology	Dr. Sirak Tekleab Gebrekristos Dr. Maarten Waterloo
Hydrogeology Tigray	Dr. Dessie Nedaw
Hydrogeology Afar/Amhara	Shiferaw Lulu
Geophysics	Dr. Shimeles Fisseha
Well design/mitigation strategy	Vince Uhl
GIS	Assaminew Gebeyehu Ashish Daw
Training GIS/RS	Prof. Dr. Maarten Waterloo Theo Kleinendorst Laurens de Vries
Project management	Zenaw Tessema Dr. Arjen de Vries

Training program

Day	Program of activities (AM/PM)
Day 1	Introduction to overlay analysis & QGIS
Tue., March 22 nd	/ Input data processing (lithology, land use)
Day 2	Input data processing (recharge, TWI)
Wed., March 23 rd	/ Input data processing (lineament proximity & density)
Day 3	Suitability map generation
Thu., March 24 th	/ Automation of suitability mapping
Day 4	Suitability map styling
Fri., March 25 th	/ Introduction to Google Earth Engine
Day 5 Sat., March 26th	Introduction to Python

Drilling site selection

How to select drilling sites

- Hydrogeological assessment
- Geological assessment
- Geophysics
- Supported by
 - Expert judgement
 - Secondary data

Multidisciplinary approach

Close communication between different experts crucial

Examples of target site analyses

- Tigray Erob Target Area 1
- Afar Afdera Target Area 1

Tigray – TA Erob

Erob TA1 – Hydrogeological characteristics

SN	Target Area code	Region	Zone	Woreda	Kebele	Center X	Center Y	Area (km²)		
1	ER2	Tigray	Eastern Tigray	Erob	Ara	578324	1601243	35		
Mode	Moderately productive fissured aquifers developed in carbonate rocks of basement									
along	along perennial rivers and faults and lineaments. Development of aquifers can be done									
by drilling mainly shallow wells with depth about 100 m. Groundwater is medium hard										
with	with TDS above 1,000 mg/l and no ions exceeding standards for drinking.									

Erob TA1 – geological map

Erob TA1 – geological crosssection

Erob TA1 - conceptual model

в

Afar - TA Afdera

Afdera TA1 – Hydrogological characteristics

SN	Target Area code	Region	Zone	Woreda	Kebele	Center X	Center Y	Area (km²)	
1	AF1	Afar	Zone 02	Afdera	Ayitura	656516	1506757	104	
Mode	Moderately productive porous aquifers where groundwater flowing to the northeast is								
accu	accumulated by barrier of central massif of Erta Ale and can be developed by shallow								
and deep wells. Groundwater is hard with TDS between 1000 and 2000 mg/l, however									
cont	ent of sulpl	hate and flu	loride can	be above a	standards f	or drinking	g water.		

Afdera TA1 – Geological map

Afdera TA1 – Geological crosssection

Afdera TA1 - VES

Afdera TA1 - Hydrogeoloy

Examples of secondary data

Existing data – well data

Woreda/region	Wells
Afar	51
Afdera	26
Berehale	17
Kori	1
Megale	3
Yalo	4
Amahara	51
Beyeda	51
Tigray	3796
Erop	251
Hawzen	1136
Kola Temben	256
Mereb Leha	375
Ofla	393
Saesi Tsadamba	1218
Tselemt	167
Grand Total	3898

Woreda/region	Springs
Afar	42
Afdera	11
Berehale	19
Megale	2
Yalo	10
Amahara	89
Beyeda	89
Tigray	501
Erop	39
Hawzen	96
Kola Temben	53
Mereb Leha	4
Ofla	139
Saesi Tsadamba	73
Tselemt	97
Grand Total	632

Satellite imagery

- Multispectral imagery
- Radar, soil moisture, water content products
- Lineament detection
 - Manual (photographs, Google Earth)
 - Automatic (Radar, Multispectral imagery)

Example of PCA, used as reference for geological interpretation

Multispectral imagery classification for geological mapping

Airborne geophysics

- Geological Survey
 - Gravimetry
 - Deeper aquifers
 - Main structures
 - Magnetometry
 - Main fault lines, lineaments and intrusives
- Mining industry
 - Quite some (airborne) surveys done
 - Not readily accessible

locations of existing VES data which part of it is used in the present study

gravity anomaly map of the study area

relative positions of the three VES points and their corresponding model parameters.

Examples of drilling site maps

Drilling sites

- Due to the security constrains no fieldwork
- Essential for updates on the actual water demand and gap analysis, geological and hydrogeological conditions, and geophysical surveys

Region	Woreda	Target Area	Reference ID	x (km)	y (km)
Afar	Afdera	AF-4	AF-4-TW1	645	1505
Afar	Afdera	AF-4	AF-4-TW2	649	1496
Afar	Afdera	AF-1	AF-1-TW1	642	1510
Afar	Afdera	AF-1	AF-1-TW2	637	1522
Afar	Berhale	BE-4	BE-4-TW1	612	1554
Afar	Berhale	BE-4	BE-4-TW2	614	1552
Afar	Berhale	BE-1	BE-1-TW1	604	1519
Afar	Berhale	BE-1	BE-1-TW2	605	1517
Amhara	Beyeda	BD-1	BD-1-TW1	445	1464
Amhara	Beyeda	BD-1	BD-1-TW2	447	1465
Amhara	Beyeda	BD-1	BD-1-TW3	447	1453
Amhara	Beyeda	BD-2	BD-2-TW1	438	1453
Amhara	Beyeda	BD-2	BD-2-TW2	436	1453
Amhara	Beyeda	BD-2	BD-2-TW3	437	1453
Tigray	Erob	ER-4r	ER-4r-TW1	558	1601
Tigray	Erob	ER-2	ER-2-TW1	598	1594
Tigray	Hawzen	HW-2	HW-2-TW1	552	1534
Tigray	Hawzen	HW-4	HW-4-TW1	525	1532
Tigray	Kola Tembian	KT-3	KT-3-TW1	509	1518
Tigray	Kola Tembian	KT-2r	KT-2r-TW1	493	1511
Afar	Kori	KR-1	KR-1-TW1	719	1405
Afar	Kori	KR-1	KR-1-TW2	712	1412
Afar	Kori	KR-1	KR-1-TW3	712	1409
Afar	Kori	KR-2r	KR-2r-TW1	712	1385
Afar	Kori	KR-2r	KR-2r-TW2	716	1385
Afar	Kori	KR-2r	KR-2r-TW3	714	1392
Afar	Megale	MG-1	MG-1-TW1	597	1435
Afar	Megale	MG-1	MG-1-TW2	594	1439
Afar	Megale	MG-2	MG-2-TW1	599	1428
Afar	Megale	MG-2	MG-2-TW2	601	1419
Tigray	Mereb Leke	ML-1	ML-1-TW1	444	1583
Tigray	Mereb Leke	ML-3	ML-3-TW1	468	1582
Tigray	Ofla	OF-2	OF-2-TW1	541	1390
Tigray	Ofla	OF-1	OF-1-TW1	521	1397
Tigray	Tseadamba	ST-2	ST-2-TW1	578	1581
Tigray	Tseadamba	ST-3	ST-3-TW1	570	1550
Tigray	Tselemt	TS-3	TS-3-TW1	429	1510
Tigray	Tselemt	TS-2	TS-2-TW1	407	1503
Afar	Yalo	YL-1	YL-1-TW1	610	1379
Afar	Yalo	YL-1	YL-1-TW2	614	1380
Afar	Yalo	YL-2	YL-2-TW1	598	1369
Afar	Yalo	YL-2	YL-2-TW2	604	1371

Multispectral Berehale TA4 drilling site

Recharge, water use and Resilience

Precipitation, recharge, demand and water scarcity

• Precipitation seems to be a dominant factor determining recharge

- Values in mm mo⁻¹ or y⁻¹
- Target area
 Kola Temben 3 (KT3)
- Water scarcity index (WSI) is ratio of demand and availability (<40%)
- High irrigation demand dry season, not sustainable

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Rain	0.3	0.0	0.3	2.9	2.1	10.4	111.2	104.9	6.5	2.7	0.2	0.1	241.6
SURFQ	0.0	0.0	0.0	0.0	0.0	0.0	5.2	7.6	0.1	0.0	0.0	0.0	12.9
LATQ	0.0	0.0	0.0	0.2	0.2	0.4	8.2	10.8	2.3	0.5	0.2	0.1	22.7
WTYIELD	1.4	1.2	1.2	1.4	1.3	1.5	14.5	19.7	3.8	2.1	1.7	1.6	51.4
ET	3.2	2.7	3.0	4.2	2.9	7.2	40.0	54.1	31.2	14.1	6.1	3.7	172.4
PET	171	187	230	235	220	144	79	74	126	195	180	149	1991
EFR	0.3	0.3	0.3	0.3	0.3	0.4	3.6	4.9	1.0	0.5	0.4	0.4	12.8
Demand													
Domestic	0.130	0.119	0.130	0.126	0.130	0.126	0.130	0.130	0.126	0.130	0.126	0.130	1.534
Livestock	0.116	0.106	0.116	0.112	0.116	0.112	0.116	0.116	0.112	0.116	0.112	0.116	1.365
Irrigation	0.914	0.833	0.914	0.885	0.914	0.000	0.000	0.000	0.000	0.000	0.000	0.000	4.462
Industry	0.007	0.006	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.007	0.083
Total	1.168	1.064	1.168	1.130	1.168	0.245	0.253	0.253	0.245	0.253	0.245	0.253	7.443
WSI	84.0	90.2	94.2	83.7	90.5	16.1	1.7	1.3	6.4	12.1	14.7	16.2	14.5

Recharge KT3

- Average areal precipitation 241 mm y⁻¹, lower is southern part
- Recharge < 10 mm y⁻¹ in Southern part (rainfed agriculture / rangeland?)
- Up to 50 mm y⁻¹ in river valleys and in Northern part (agriculture, irrigation?)

Precipitation and recharge

- If we display all target areas, it becomes clear that there is little recharge in areas below 400 mm y⁻¹ precipitation
- Recharge increases with precipitation above 400 mm y⁻¹
- Water scarcity can easily develop in low rainfall areas

Water scarcity index and P

- Annual WSI is relatively low when P > 500 mm y-1
- However, if irrigation is practiced WSI in dry season may already exceed threshold value (40%)
- Careful planning needed to match demand to water resources availability
- Water harvesting and soil conservation important

Conclusions & recommendations

Conclusions

- In case of <400mm/y limited recharge
- Climate models suggest increased precipitation intensity
- SWC needed to enhance recharge
- Methodology focusses on potential for shallow groundwater

Recommendations

- Approach should be more regional, catchment based
- Development plan and demand mapping should be first step
- Water quality should be integral part of overlay analysis

Thanks for your attention

March 21th 2022

van Hogendorpplein 4, 2805 BM Gouda, the Netherlands telephone: +31 (0)182 - 686 424 info@acaciawater.com | www.acaciawater.com