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1 Introduction 

The Ministry of Water and Energy has received funding from DFID for a three-year 

project entitled "Delivering Climate Resilient Water, Sanitation and Hygiene in Ethiopia". 

As agreed by an MOU between DFID and the Government of Ethiopia, two of the four 

programs are being implemented by the Ministry. This project, which runs to 31 March 

2022, is part of the UK government's aid strategy to support the poorest people in 

adapting to climate change, specifically on building climate resilience in water and 

sanitation services that contributes to achieving Sustainable Development Goal 6. The 

project complements DFID and Ethiopia's significant programming on water and 

sanitation and supports effective delivery of the Government of Ethiopia's strategy for 

sustainable water supply in drought affected areas. A key feature of this program 

involves funding for groundwater mapping and improvement of groundwater data 

management.  

1.1 Objectives 
 Overall objectives 

The objective of this project is to increase access to safe and sustainable water for the 

people in drought affected regions by producing hydrogeological maps at the Woreda 

level and recommend drilling sites which the Government of Ethiopia and other partners 

can use for developing groundwater.  

 

 Specific objectives 
A first step of this project is the initial identification of target areas for borehole 

drilling. The focus of this project is:  

• Create detailed groundwater potential maps for each Woreda. 

• Identify one optimal drilling site and one alternative (optional) drilling site per 

Woreda, using the groundwater potential maps and geophysical field investigation 

results, and recommend the type of drilling methodology(s) to be employed. 

• Build the capacity of the former Water Development Commission (WDC), former 

Basins Development Authority (BDA), regional governments, and NGOs to use/apply 

overlay analysis techniques for groundwater potential mapping and borehole siting 

in Ethiopia. 

1.2 Project area 
The overall project covers a total of 53 woredas throughout the country which is 

subdivided into four lots. The current project deals with the 13 woredas from Lot 1 in 

the Tigray, Afar and Amhara Regions (Figure 1). 
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Figure 1. Location of the 13 selected woredas for Lot 1 
 

1.3 The project 
The project is designed in 3 phases: 

 

• Phase I (Inception Phase)  

• Phase II (Mapping Phase) 

• Phase III (Siting Phase) 

 

Phase I has been completed in August 2021, while phase II was finalized in Jan 2022. 

The current report covers the work for Phase III. 

 

The main outputs of Phase III are: 

• A more detailed geological unit distribution, including structural details in 

appropriate scale, based on higher resolution images; 

• Hydrogeological operational maps (1:50,000); 

• Detailed geological, hydrogeological, and geophysical (including existing data 

and satellite geophysics) study in each target area; 

• Determination of target drilling sites in the target areas, including drilling sites 

maps (1:5,000) and geophysical profiles 

• Phase III final report per target area;  

 

The outputs are attached as annex 1-3 to this report and can be downloaded from the 

dissemination website of the project https://mowe.acaciadata.com. 

 

1.4 Acknowledgement 

Due to the security constrains in the project area, the workplan for phase III has been 

revised. The project team could not travel to the field to carry out inventories, 

hydrogeological or geophysical studies. Instead, we relied on existing data and remote 
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sensing products. Because fieldwork is essential for updates on the actual water demand 

and gap analysis, geological and hydrogeological conditions, and geophysical surveys, 

we can only propose target sites with a certain tolerance radius, not exact drilling 

sites. Exact drilling sites, drilling depth and estimated yield should be set after detailed 

geophysical fieldwork. 



 

  
- 4 - 

Report Phase 3 –  
BDA/ICB/GW01/2021  

 

2 Target areas 

Using the groundwater potential maps, socio-economic maps, conceptual models and 

cross sections, target areas have been selected in every Woreda during phase II of this 

project. The selection of target areas should have been done in consultation with local 

experts and stakeholders. Due to the security constraints, this could not be realized. 

Instead, the project team has prepared a prioritized list of 2 to 4 target areas per 

Woreda where both groundwater potential, and water demand has been considered. It 

should be noted here that the water demand is derived from secondary data from CSA 

census (2007), projected population growth, locations of schools, health centres and 

existing water point inventories. Please see the report of Phase 2 for a generic 

description of the methodology. Detailed water demand estimates have been included in 

the woreda reports.  

 
Figure 2 Methdology 

  
The groundwater potential maps from Phase 2 have been used as a starting point to 

select the target areas. The maps were prepared using GIS overlay analysis which applies 

the rating and scoring of hydrogeological parameters that controls the occurrence and 

movement of groundwater in the areas, which considers parameters such as: lithology, 

lineament and lineament density, drainage, and drainage density, inferred permeability, 

geomorphology and slope, precipitation, and recharge rate.  

 

Technical and socio-economic aspects of the areas have also been considered during the 

selection. These include evaluations on geology and geomorphological settings, general 

hydrogeological conditions, access, water demand and presence of social infrastructures 

in the area with lack of water supply to get priority in selections.  
 

The target areas are presented as polygons with reference coordinates to their centres to 

support in ground control during the geophysical survey and pinpointing the actual 
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drilling sites which will be depicted on the 1:50,000 operational hydrogeological maps 

during phase III. 

 

Figure 3 Lot 1 Target Areas 
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3 Geology 

3.1 Description of regional geology 
The geology of northern and north-eastern Ethiopia, in which the project areas are 

situated, was previously mapped at different scales and studied by various researchers. 

The mapping of the region at a scale of 1:250,000 by the Geological survey of Ethiopia 

including Adigrat map sheet (Garland, 1972); Mekele map sheet (Beyth, 1972), Axum 

map sheet (Tadesse, 1997), Adi Arkay map Sheet (Tsegaye, 1974) and, compilation work 

of geology of Afar area at a scale of 1:100,000 (UNICEF report) are sources of major 

geological information. These works have identified and described a succession of rock 

formations ranging in age from Precambrian up to Quaternary. The Precambrian 

metamorphic rocks include low grade metavolcanic and metasedimentary rocks. The 

metavolcanic rocks cover relatively larger part of the metamorphic terrain of northern 

Ethiopia and is regionally known as the Tsaliet Group (Beyth, 1972, Garland, 1972, 

Tefera et. al., 1996). This is uncomfortably overlain by poorly metamorphosed and 

weakly deformed younger silciclastic and carbonate units of slates and limestone known 

as the Tembian Group (Beyth, 1972, Grland, 1972). These slate-carbonate succession are 

contained in a series of NE-SW, often overturned pairs of synclinal and anticlinal 

structures. These rocks together with mafic to felsic intrusive bodies of variable size and 

composition in the region belong to the Arabian Nubian Shield component of East 

African Orogen (Stern, 1994, Tadesse, 1997; Tadesse et. al,. 1999, 2000, Asrat et al., 

2003) and are thought to be the product of plat tectonic process that involved 

subduction, build-up of intraoceanic island arcs, lateral accretion of the arcs associated 

with the convergence and subsequent collusion between East and West Gondwana 

during the Neoproterozoic (900-550 Ma., Stern 1994, Fritz 2013).    

  

These Neo-Proterozoic metamorphic rocks of the region are unconformable overlain by 

Palaeozoic (Ordovician) tillites (Edaga Arbi Galcials) which is laterally inter-fingered with 

carbonate cemented, white clastic Enticho Sandstone (Graland, 1972; Beyth, 1972). These 

rocks, where not covered by the later Jurassic sedimentary and Tertiary volcanic 

sequence or eroded deep, they represent potential ground water aquifers of the region. 

Following the Ordovician deposit, intra-continental rifting in Permian initiated the break-

up of Gondwana and led to continental mass subsidence and subsequent transgression 

of Indian Ocean (Hunegaw et al., 1998; Boselline et al., 2001). The transgression lain 

down thick clastic, passive continental margin deposit followed by shallow and deep 

marine sedimentary deposits during the Jurassic (Hunegnaw et al., 1998; Bosellini et al., 

2001). The base of transgression event was marked by the deposition of clastic lower 

sandstone known as the Adigrat Sandstone in the northern Ethiopia; followed upwards 

by scission of limestone marl, and shale and ended when the region was uplifted by 

mantle plum under the Afro-Arbain plate (Mohr and Zanettin, 1988). The up-doming 

resulted in the withdrawal of the Indian Ocean and deposition of regressive facies; 

marine sediments caped by clastic sedimentary rock (the upper Sandstone or Abaradam 

sandstone (Hunegnaw et al., 1998; Bosellini et al., 2001).  
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Plum related voluminous Tertiary Flood basalt eruption between 42-29Ma on the top of 

Mesozoic Sedimentary succession is believed to be approximately coeval with northeast-

directed extension in the southern Red Sea and Gulf of Aden ( Ebinger et al., 1993; Baker 

et al., 1996; Hofman et al., 1997; Ayalew et al., 2002; Ayalew & Yirgu, 2003). The 

volcanics are made up repeating sequences of thick (up to 2km) basaltic lava flows 

overlain by rhyolites including ignimbrites, air fall tuffs and lavas. These volcanic rocks 

cover much of the NW and SE Ethiopian Plateau. The edge of Afar depression is made of 

heavily faulted and weathered Eocene to early Miocene (25-15Ma)  Trap basaltic volcanic 

rocks (Beyene & Abdelsalam, 2005). The most extensive volcanic sequence covering 

about two thirds of the NW-SE Afar Depression is the Pliocene-Pleistocene Afar Stratoid 

Series of up to 1500 m thick (Barberi & Varet, 1977; Hayward & Ebinger, 1996; Hofstetter 

& Beyth, 2003). These and overlying younger sequences are believed to be controlled by 

the NW-SE rifting parallel to the Red Sea rift axis. East and west of the Afar depression, 

Transverse volcanics of mainly basaltic composition occur (Barberi & Varet, 1977; 

Hayward & Ebinger, 1996; Hofstetter & Beyth, 2003). The axial zone of the Afar 

Depression is covered by Quaternary Axial Volcanic Ranges and are characterized by 

fault controlled fissure eruptions and shield volcanoes with basaltic flows and alkaline 

and per-alkaline silicic rocks. They occur along northwest-southeast trending narrow rift 

zones ((e.g. Mohr and Zanettine, 1988)). The Quaternary sediments of the Afar Region 

are mostly fluvial/ or lacustrine In origin, commonly thin, often terrace forming but 

occasionally thick pile of sediments occur in deeply faulted narrow grabens. 

 

3.2 Update of the geological maps 
 

Detailed, 1:50,000 scale geological maps have been constructed for the target areas. The 

maps form the basis for the 1:50,000 hydrogeological maps that are annexed to the 13 

woreda reports. 

 

Existing 1:100,000 and 1:250,000 scale maps have been used as a base map for 

lithological naming and where possible to get the dip and strike of structural data. 

These maps have been produced by most experienced geologists, using ground traverses 

augmented with black and white aerial photo interpretation of approximately 1:60,000 

scale. 

 

The present 1:50,000 maps for the target areas have been created using satellite imagery 

with very good resolution (Sentinel-2, Landsat-8). Use of image enhancement techniques 

(band ratioing) produced colour mosaic map of the areas with clear geological 

boundaries defined by different hues of colour, faults and lineaments. The tracing of 

geological contacts and major structures are done more accurately than the 1:250,000 

scale map. In most cases, we have obtained enhanced detailed geological information, 

modified the contacts of geological units with good precision. 

The mapping production of the TAs is completed by geologists who have physically 

mapped the region in person with input from the GIS-Remote sensing expert. 
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4 Hydrogeology  

The hydrogeological characteristics and groundwater potential of the areas are highly 

affected by the complexity of the geology, physiography, climate and geological 

structures. The classification of different lithological units is based on the qualitative 

and quantitative parameters of the hydrogeological characteristics of various rocks. 

Since quantitative data such as permeability, yield, aquifer thickness and transmissivity 

are not sufficient or evenly distributed throughout the area, it was essential to apply a 

qualitative approach in order to achieve a complete and detailed potential classification. 

Qualitative investigation includes field observations of the geological, hydrogeological, 

geomorphological, physical and geographical setup. Hence, the lithological units are 

characterized as having porous or fissured permeability, or they are impermeable.  

  

Based on the hydrogeological character of the lithological units and their topographical 

position, the study area can be divided into aquifers – non aquifers with different 

occurrences of groundwater, as follows: 

• Porous aquifers developed in Quaternary alluvial and eluvial sediments; 

• Fissured and karstic aquifers in limestone, fossiliferous and sandy limestone; 

• Fissured aquifers developed in Paleozoic to Mesozoic sedimentary rocks 

(non-karstic), Tertiary and Quaternary volcanic rocks; 

• Fissured aquifers developed in Precambrian basement rocks; 

• Aquitards and aquicludes. 

  

The hydrogeological map shows aquifers defined based on the character of groundwater 

flow (pores, fissures) and the yield of springs, boreholes and dug wells. 
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5 Geophysical exploration 

 

The main objectives of geophysical investigation have been the identifications of 

structural elements with depth estimates of anomalous subsurface sources using 

potential data, namely, regional airborne gravity data. The main objective is to delineate 

all possible structural features and examine their roles on the regional groundwater 

dynamics of Northern and North-eastern Ethiopia.  

  

Overview of geophysical methods being widely used for variety of purposes in 

groundwater studies, such as:  

• Geologic characterization, including assessing types and thicknesses of 

strata and the topography of the bedrock surface below unconsolidated 

material, and generating fracture mapping and paleochannels; 

• Aquifer characterization, including depth to water table, water quality, 

hydraulic conductivity; 

• Contaminant plume identification, both vertical and horizontal distribution 

including monitoring changes over time.  

  

There are several geophysical methods that are common to most groundwater studies. 

The first most important step is collecting high-quality data using the geophysical 

method or methods that are most likely to provide crucial parameter that can help 

resolving a particular hydrogeological characterization or monitoring objective and that 

work well in the given environment. Although the corresponding geophysical properties. 

  

Maximum effort has been exerted to review of all existing geophysical works within the 

project area and use the data to assist the ongoing integrated ground water assessment 

program in Lot 1, which comprised Woredas in Tigray, Afar and Amhara Regions.  

  

The first desirable component, readily available for regional evaluation, was a 

countrywide Airborne Gravity data. The existing aero-gravity data covering the North 

and Northeast regions is obtained from the airborne gravity surveys over Ethiopia, 

acquired in the period from 2006 to 2008, through the collaboration between the 

Geophysical Observatory (the current IGSSA) of the Addis Ababa University, the 

Ethiopian Geological Survey, (GSE) and the Danish National Space Centre (DNSC).   

 

The other usable input is that of geoelectric data resulted from previous geophysical 

works, Vertical Electrical Survey (VES), in the LOT1 project area. The vast majority 

number of the sounding points are from east central Tigray regions. A good number of 

usable VES data were also found from Afar region. Unfortunately, there has not been any 

VES data from Woredas in the Amhara region.  
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Those set of geoelectrical data, whose sounding points are within the boundary of the 

target areas of the current project, would be used for quantitative appraisal of the 

subsurface layer parameters.  

  

Existing geophysical datasets provide a useful, yet highly limited, perspective on 

geophysical signatures of groundwater occurrence in the project area. This constitutes a 

major limitation that the subsurface hydro geophysical parameters were sought from 

the scarce previous works in the area. 
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6 Hydrology 

The hydrological study aims at characterization of catchment areas, streams and rivers 

within or adjacent to the study areas and assessments on recharge patterns and rates, 

existence of springs and their hydrogeological implications and surface water and 

groundwater relationships. The assessment of the hydrology of the target areas is part 

of the development of Conceptual Models (Phase II) since analyzing the interaction 

between surface and groundwater is essential to understand the hydrogeology of the 

area. 

 

The sustainability of groundwater use is a balance between recharge volumes of 

groundwater in a source area and subsequent extraction for domestic, agricultural and 

industrial use. Agricultural use of water is related to irrigation, mainly in the dry season. 

As irrigated water is lost to the atmosphere by evapotranspiration, the extraction of 

groundwater for irrigation results in increased evapotranspiration, and therefore will 

affect river runoff if groundwater levels are structurally lowered by the extraction.  

 

Groundwater recharge is one of key input in the overlay analysis and is investigated 

using multiple approaches so at to arrive at acceptable values. Recharge is estimated for 

each woreda based on the recharge generated by validated SWAT models, which has 

been a proven approach in Ethiopia. The recharge values obtained in this study serve to 

assess the sustainability and limits of groundwater extraction for use in agriculture or 

drinking water supply. 

 

This study is a continuation of Phase I and II of hydrogeological mapping of climate 

resilient WASH project in Ethiopia. For the surface water hydrological study, 

meteorological and hydrological data available on daily time scale were collected and 

analyzed. The study envisages the rainfall-runoff processes with the objective of 

estimating the water balance components of the target areas on monthly and annual 

time scales. Groundwater recharge was estimated using the Soil and Water Assessment 

Tool (SWAT) model at sub-watershed level. The water availability within the target areas 

for different competing needs, i.e. for domestic, irrigation, industrial and livestock use, 

have been estimated through accepted techniques. Due to many sources of 

uncertainties, such as in the temporal input data, spatial data heterogeneities, 

hydrological model spatial representation and model parameter uncertainties, the 

estimated water balance components and recharge are subject to a certain degree of 

uncertainty. Hence, the study first and foremost was limited to use merged rainfall 

satellite products from the Climate Forecast System Re-analysis (CFSR) and CHIRPS data 

(Climate Hazards Centre, n.d.; Dinku et al., 2018) as forcing inputs into the SWAT model 

in order to estimate the water balance components and recharge. However, one could 

get different outcomes using different forcing inputs, hydrological models and 

approaches. The other limitation of this study is that the estimated baseflow and the 
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spatio-temporal variation of the water availability have not been validated through field 

exploration. This could not happen due to the current security issue in the study area. 

 

The determination of the water balance components, including river flow amounts and 

groundwater recharge estimates, was based application of the Soil Water Assessment 

Tool (SWAT) model (Arnold et al., 2012; Srinivasan et al., 2010; Tibebe and Bewket, 2011) 

to several catchments in the project area.   
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7 Hydro-geochemistry 

The chemical quality of the groundwater in Afar region ranges from fresh groundwater 

to brine. The Total Dissolved Solids (TDS) which is the major indicator of salinity ranges 

from about 300mg/l in the western rift margins to over 100,000mg/l in the Danakil 

Depression. The salinity increases from west and northwest towards east and northeast 

following the general trend of the groundwater flow. The groundwater from the 

mountains dissolves different chemicals on its way towards the Danakil Depression that 

increases the salinity of the groundwater. The salinity is as a result of the long and deep 

circulation of the groundwater from the western and southeastern plateau towards the 

Afar depression, the geothermal activities within the Afar Depression, dissolution of the 

salt deposits and high evaporation rate in the Afar depression that leaves salty crust on 

the surface that leaches into the groundwater during rainy seasons.  

 

The springs that feed the lakes are brackish to brine that form saline lakes of Afdera, 

Assale and salt flats. The water quality analysis result from the 550m deep test well 

situated 44km west of Afdera Lake / Town shows that the groundwater is saline with 

TDS range 22,000 mg/l to 42,000 mg/l. At the beginning of the test the TDS was high 

and at the end of the test the TDS has reduced almost by half. This is as a result low 

TDS water was being attracted from the western mountain side with the expansion of 

the cone of depression with increased duration of test. The electrical conductivity (EC) 

monitoring of the drilling mud during drilling indicates a general declining trend of EC 

values up to 360m depth and then shown increasing trend. This indicates that the 

deeper groundwater is more saline than the shallow ones probably related to density 

difference. 

 

The major ions of the groundwater are sodium, calcium and chloride. The chemical 

analysis result of the water sample shows that the groundwater is chemically Na-Ca-Cl 

and Ca-Na-Cl type. The groundwater from the deep aquifer has fluoride over 2.5 mg/l. in 

addition to salinity; developing the deep groundwater may result with higher 

concentration of chemicals of health risk such as fluoride, boron, chromium, arsenic, 

etc.. The water quality indicates the major sources of the water chemistry are dissolved 

carbonates and salts such as carbonates, dolomites, anhydrite, sylvite and halite 

deposits. 

 

  



 

  
- 14 - 

Report Phase 3 –  
BDA/ICB/GW01/2021  

 

8 Climate resilience 

We have used model output from the Coupled Model Intercomparison Project (CMIP) and 

analysed the forecasted changes in temperature, precipitation and evapotranspiration in 

order to assess the impact on the long-term sustainability of groundwater development 

in the project area. 
 

8.1 Climate projections 
The projection of climate change until 2100 is one of the factors that is key to the 

climate proofing of the water supplies at a certain location. The future is inherently 

uncertain, and the climate projections are therefore strongly dependent on carbon 

emission pathways (scenarios) that will be materialized in the coming decades. Four 

representative concentration pathway scenarios were developed by the scientific 

community (van Vuuren et al., 2011a, 2011b), which are adopted by the 

Intergovernmental Panel on Climate Change (IPCC), to simulate a range of developments 

and include: 

 

1. RCP2.6: a best scenario where greenhouse gas (GHG) emissions would decline 

due to implementation of measures; 

2. RCP4.5: described by the IPCC as an intermediate scenario where GHG 

emissions peak around 2040, then decline to reach roughly half of the levels of 

2050 by 2100; 

3. RCP6.0: GHG emissions peak around 2080, then decline; 

4. RPC8.5: worst scenario where GHG emissions continue to rise throughout the 

21st century, having the highest impact on climate change. 

 

In addition, uncertainties in the projections arise from the simulations by different 

models that are used for making climate projections. In the CMIP5 modelling experiment 

21 global circulation models were used to make climate projections until 2100 for 

several scenarios (Taylor et al., 2012). Use of these data has been intended for research 

purposes and was not recommended for design studies without expert knowledge. 

However, these data do provide an insight into temperature and precipitation trends for 

the future. The later CMIP6 experiment includes 23 models (Eyring et al., 2016) and uses 

different scenarios, but projections have not been downscaled for regional assessments. 
 

8.2 Climate projection data 
CMIP5 data is available as a Google Earth Engine dataset “NASA Earth Exchange Global 

Daily Downscaled Climate Projections” (NEX-GDDP). The NASA NEX-GDDP dataset is 

comprised of downscaled climate scenarios for the globe that are derived from the 

General Circulation Model (GCM) runs conducted under the Coupled Model 

Intercomparison Project Phase 5 (CMIP5, see Taylor et al. 2012) and across two of the 

four greenhouse gas emissions scenarios known as Representative Concentration 
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Pathways (RCPs, see Meinshausen et al. 2011).  Data for the 21 models used in the CMIP5 

modelling experiment were downscaled to 0.25° x 0.25°. The dataset contains daily 

projections until 31 December 2099.  

 

The data consist of daily projection values of precipitation, maximum and minimum 

temperatures derived from the 21 models. The 21 models used are: inmcm4, CSIRO-

Mk3-6-0, bcc-csm1-1, NorESM1-M, MRI-CGCM3, MPI-ESM-LR, MIROC5, MIROC-ESM, 

MIROC-ESM-CHEM, IPSL-CM5A-MR, IPSL-CM5A-LR, GFDL-ESM2M, GFDL-ESM2G, GFDL-

CM3, CanESM2, CNRM-CM5, CESM1-BGC, CCSM4, BNU-ESM, and the ACCESS1-0 models. 

 

The 66-member CMIP6 projection data were downloaded from KNMI Climate Explorer 

web site https://climexp.knmi.nl and processed. 
 
CMPI5 RCP4.5 model predictions have been used to generate regional trends in 

temperature and precipitation changes for the years 2006-2100, and CMIP6 for detailed 

analysis (1866-2100) of a single, central location in the project area of Lot-1 (Mekele, 

Tigray). 

 

For Ethiopia, CMPI5 models predict an increase in annual precipitation between 0 and 3 

mm/y. The largest increase is predicted for the south of the country (Figure 4). 

 
Figure 4 CMIP5 rcp45 scenario: linear precipitation trend 2006-2100 
 

CMIP6 output for Mekele (Figure 5) shows a similar trend: increase of annual 

precipitation (25 mm) and average temperature (1.2 degrees Celsius) between the year 

2006 and 2100. A statistically significant change in precipitation is only apparent during 

the month of August  (+11 mm).  

The average forecast for the annual potential evapotranspiration shows a large increase 

of 100 mm for the same period. This means that the Aridity Index (P / PET) will decrease 

considerably (from 0.6 to 0.575) which may lead to reduced groundwater recharge and 

reduced drought resilience.  
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In Tigray region, where basement aquifers dominate, shallow groundwater is the main 

source for water supply. In Afar deep groundwater exists, but it is not always of good 

quality. In Afdera woreda, shallow, fresh groundwater may be found at the foot of the 

alluvial fans that are recharged from the plateau around Mekele and Amba Alaji.  

 

Although strong soil and water conservation practices exist in the project area, 

strengthening these land management activities and reinitiating additional artificial 

recharge structures will contribute to the climate resilience.  

  

  

  
Figure 5 CMIP6 forecast for Mekele (Tigray) 
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